
C++ Toolkit Book Project Creation and Management

6-1

6. Project Creation and Management
Created: April 1, 2003
Updated: September 16, 2003

Overview
The overview for this chapter consists of the following topics:

• Introduction

• Chapter Outline

Introduction
This chapter discusses the setup procedures for starting a new project such as the location of

make files, header files, source files, etc. It also discusses the CVS tree structure and how to use
CVS for tracking your code changes, and how to manage the development environment.

Chapter Outline
The following is an outline of the topics presented in this chapter:

• Starting New Projects

• New Projects: Location and File Structure

• Projects and the Toolkit's CVS Tree Structure

• Creating source and include CVS dirs for a new C++ project

• Starting New Modules

• Meta-makefiles (to provide multiple and/or recursive builds)

• Project makefiles

• Example 1: Customized makefile to build a library

• Example 2: Customized makefile to build an application

• Example 3: User-defined makefile to build... whatever

• New Project (lib, application) Development Aids

• scripts/import_project.sh <cvs_tree_path> [builddir]

C++ Toolkit Book Project Creation and Management

6-2

• scripts/new_project.sh <name> <type> [builddir]

• scripts/hello.sh

• An example of the NCBI C++ makefile hierarchy ("corelib/")

• Managing the Work Environment

• Obtaining the Very Latest Builds

• Working in a separate directory

• Setting up Directory Location

• The Project's Makefile

• Testing your setup

• Working Independently In a C++ Subtree

• Working within the C++ source tree

• Checkout the source tree and configure a build directory

• The project's directories and makefiles

• Makefile.in meta files

• An example meta-makefile and its associated project makefiles

• Executing make

• Custom project makefile: Makefile.myProj

• Library project makefile: Makefile.myProj.lib

• Application project makefile: Makefile.myProj.app

• The configure scripts

• Working with the serializable object classes

• Serializable Objects

• Locating and browsing serializable objects in the C++ Toolkit

• Base classes and user classes

• Adding methods to the user classes

• Checking out source code, configuring the working environment, building the
libraries.

• Adding methods

C++ Toolkit Book Project Creation and Management

6-3

Starting New Projects
The following assumes that you have all of the necessary Toolkit components. If you need to
obtain part or all of the Toolkit's source tree, consult the FTP instructions or CVS checkout proce-
dures. Please visit the Getting Started page for a broad overview of the NCBI C++ Toolkit and its
use.

The following topics are discussed in this section:

• New Projects: Location and File Structure

• Projects and the Toolkit's CVS Tree Structure

• Creating source and include CVS dirs for a new C++ project

• Starting New Modules

• Meta-makefiles (to provide multiple and/or recursive builds)

• Project makefiles

• New Project (lib, application) Development Aids

• An example of the NCBI C++ makefile hierarchy ("corelib/")

New Projects: Location and File Structure
Before creating the new project, you must decide if you need to work within a C++ source tree (or
subtree) or merely need to link with the Toolkit libraries and work in a separate directory. The
later case is simpler and allows you to work independently in a private directory, but it is not an
option if the Toolkit source, headers, or makefiles are to be directly used or altered during the
new project's development.

• Work in the Full Toolkit Source Tree

• Work in a Toolkit Subtree

• Work in a Separate Directory

Regardless of where you build your new project, it must adopt and maintain a particular struc-
ture. Specifically, each project's source tree relative to $NCBI/c++ should contain:

• include/*.hpp -- project's public headers

• src/*.{cpp, hpp} -- project's source files and private headers

• src/Makefile.in -- a meta-makefile template to specify which local projects (described in
Makefile.*.in) and sub-projects (located in the project subdirectories) must be built

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/

C++ Toolkit Book Project Creation and Management

6-4

• src/Makefile.<project_name>.{lib, app}[.in] -- one or more customized makefiles to build a
library or an application

• src/Makefile.*[.in] -- "free style" makefiles (if any)

• sub-project directories (if any)

Projects and the Toolkit's CVS Tree Structure
(For the overall NCBI C++ CVS tree structure see CVS details.)

Even if you work outside of the C++ tree, it is necessary to understand how the Toolkit uses
makefiles, meta-makefiles, and makefile templates, and the CVS tree structure.

The standard CVS location for NCBI C++/STL projects is $CVSROOT/internal/c++/. Public
header files (*.hpp, *.inl) of all projects are located below the $CVSROOT/internal/c++/include/
directory. $CVSROOT/internal/c++/src/ directory has just the same hierarchy of subdirectories
as .../include/, and its very top level contains:

• Templates of generic makefiles (Makefile.*.in):

• Makefile.in -- makefile to perform a recursive build in all project subdirectories

• Makefile.meta.in -- included by all makefiles that provide both local and recursive
builds

• Makefile.lib.in -- included by all makefiles that perform a "standard" library build,
when building only static libraries.

• Makefile.dll.in -- included by all makefiles that perform a "standard" library build,
when building only shared libraries.

• Makefile.both.in -- included by all makefiles that perform a "standard" library build,
when building both static and shared libraries.

• Makefile.lib.tmpl.in -- serves as a template for the project customized makefiles
(Makefile.*.lib[.in]) that perform a "standard" library build

• Makefile.app.in -- included by all makefiles that perform a "standard" application
build

• Makefile.lib.tmpl.in -- serves as a template for the project customized makefiles
(Makefile.*.app[.in]) that perform a "standard" application build

• Makefile.rules.in, Makefile.rules_with_autodep.in -- instructions for building object
files; included by most other makefiles

• Makefile.mk.in -- included by all makefiles; sets a lot of configuration variables

C++ Toolkit Book Project Creation and Management

6-5

• The contents of each project are detailed above. If your project is to become part of the
Toolkit tree, you need to ensure that all makefiles and Makefile*.in templates are available
so the master makefiles can properly configure and build it (see "Meta-Makefiles" and
"Project Makefiles" below). You will also need to prepare CVS directories to hold the new
source and header files.

Creating source and include CVS dirs for a new C++ project
To create your new project (e.g., "bar_proj") directories in the NCBI C++ CVS tree to directory
foo/c++/):

cd foo/c++/include && mkdir bar_proj && cvs add -m "Project Bar" bar_proj
cd foo/c++/src && mkdir bar_proj && cvs add -m "Project Bar" bar_proj

Now you can add and edit your project C++ files in there.
NOTE: remember to add this new project directory to the $(SUB_PROJ) list of the upper level

meta-makefile configurable template (e.g., for this particular case, to foo/c++/src/Makefile.in).

Starting New Modules
Projects consist of modules, which are most often a pair of source (*.cpp) and header (*.hpp)
files. To help create new modules, template source & header files may be used, or you may mod-
ify the sample code generated by the script new_project.sh.

Usually, each C++ module consists of 2 files (follow links for templates):

• Header file (*.hpp) -- API for the external users. Ideally, this file contains only declarations
of things (to be well commented!) that are exposed to external users. No less, and no
more. Inline functions are to be defined here. This file is placed in the $NCBI/c++/include
directory.

• Source file (*.cpp) -- Definitions of non-inline functions and internally used things that
should not be included to other modules. This file is placed in the $NCBI/c++/src directory.

On occasion, a second private header file is required for good encapsulation. Such second
headers should be placed in the $NCBI/c++/src directory along with its including source file.

Each and every source file must include NCBI disclamer and (preferably) CVS info using
CVS keywords. Then, the header file must be protected from double-include, and it must define
any inlined functions, if any.

The above examples contain a standard startup framework so that one could just cut-and-
paste one of them to start a new C++ file (just dont forget to replace the "framewrk" stubs by your
new module name).

C++ Toolkit Book Project Creation and Management

6-6

Meta-makefiles (to provide multiple and/or recursive builds)
All projects from the NCBI C++ hierarchy are tied together by a set of meta-makefiles which are
present in all project source directories and provide a uniform and easy way to perform both local
and recursive builds. See more detail on the Working with Makefiles page. A typical meta-
makefile template(e.g. Makefile.in in your foo/c++/src/bar_proj/ dir) looks like that:

Makefile.bar_u1, Makefile.bar_u2 ...
USR_PROJ = bar_u1 bar_u2 ...
Makefile.bar_l1.lib, Makefile.bar_l2.lib ...
LIB_PROJ = bar_l1 bar_l2 ...
Makefile.bar_a1.app, Makefile.bar_a2.app ...
APP_PROJ = bar_a1 bar_l2 ...
SUB_PROJ = app sub_proj1 sub_proj2
srcdir = @srcdir@
include @builddir@/Makefile.meta

This template separately specifies instructions for user, library and application projects, along
with a set of three sub-projects that can be made. The mandatory final two lines "srcdir =
@srcdir@ ; include @builddir@/Makefile.meta" define the standard build targets.

Project makefiles
Just like the configurable template Makefile.meta.in is used to ease and standardize the writing of
meta-makefiles, so there are templates to help in the creation of "regular" project makefiles to
build a library or an application. These auxiliary template makefiles are described on the "Working
with Makefiles" page and listed above. The configure'd versions of these templates get put at the
very top of a build tree.

In addition to the meta-makefile that must be defined for each project, a customized make-
fileMakefile.<project_name>.[app|lib] must also be provided. The following three sections give
examples of customized makefiles for a library and an application, along with a case where a
user-definedmakefile is required.

You have great latitude in specifying optional packages, features and projects in makefiles.
The macro REQUIRES in the examples is one way to allows you access them. See the "Working

with Makefiles" page for a complete list; the configuration page gives the corresponding configure
options.

The following examples are discussed in this section:

• Example 1: Customized makefile to build a library

• Example 2: Customized makefile to build an application

• Example 3: User-defined makefile to build... whatever

C++ Toolkit Book Project Creation and Management

6-7

Example 1: Customized makefile to build a library
Here is an example of a customized makefile to build library libxmylib.a from two source files

xmy_src1.cpp and xmy_src2.c, and one pre-compiled object file some_obj1.o. To make the
example even more realistic, we assume that the said source files include headers from the NCBI
C Toolkit.

File Makefile.xmylib.lib:

LIB = xmylib
SRC = xmy_src1 xmy_src2
OBJ = some_obj1
REQUIRES = xrequirement
CFLAGS = $(ORIG_CFLAGS) -abc -DFOOBAR_NOT_CPLUSPLUS
CXXFLAGS = $(FAST_CXXFLAGS) -xyz
cppFLAGS = $(ORIG_cppFLAGS) -UFOO -DP1_PROJECT -I$(NCBI_C_INCLUDE)

• Skip building this library if xrequirement (an optional package or project) is disabled or
unavailable

• Compile xmy_src1.cpp using the C++ compiler $(CXX) with the flags

$(FAST_CXXFLAGS) -xyz $(cppFLAGS), which are the C++ flags for faster code, some
additional flags specified by the user, and original preprocessor flags

• Compile xmy_src2.c using the C compiler $(CC) with the flags $(CFLAGS) -abc -

DFOOBAR_NOT_CPLUSPLUS $(cppFLAGS), which are the original C flags, some addi-
tional flags specified by the user, and original preprocessor flags

• Using $(AR) and $(RANLIB) [$(LINK_DLL) if building a shared library], compose the

library libxmylib.a [libxmylib.so] from the resultant object files, plus the pre-

compiled object file some_obj1.o.

• Copy libxmylib.* to the top-level lib/ directory of the build tree (for the later use by

other projects)

This customized makefile should be referred to as xmylib in the LIB_PROJ macro of the

relevant meta-makefile. As usual, Makefile.mk will be implicitly included.
This customized makefile can be used to build both static and dynamic (DLL) versions of the

library. To encourage its build as a DLL on the capable platforms, you can explicitly specify:

LIB_OR_DLL = dll

or

LIB_OR_DLL = both

Conversely, if you want the library be always built as static, specify:

C++ Toolkit Book Project Creation and Management

6-8

LIB_OR_DLL = lib

Example 2: Customized makefile to build an application
Here is an example of a customized makefile to build the application my_exe from three source

files, my_main.cpp, my_src1.cpp, and my_src2.c. To make the example even more realistic, we
assume that the said source files include headers from the NCBI SSS DB packages, and the tar-
get executable uses the NCBI C++ libraries libxmylib.* and libxncbi.*, plus NCBI SSS

DB, SYBASE, and system network libraries. We assume further that the user would prefer to link
statically against libxmylib if building the toolkit as both shared and static libraries (configure
--with-dll --with-static ...), but is fine with a shared libxncbi.

File Makefile.my_exe.app:

APP = my_exe
SRC = my_main my_src1 my_src2
OBJ = some_obj
LIB = xmylib$(STATIC) xncbi
REQUIRES = xrequirement
cppFLAGS = $(ORIG_cppFLAGS) $(NCBI_SSSDB_INCLUDE)
LIBS = $(NCBI_SSSDB_LIBS) $(SYBASE_LIBS) $(NETWORK_LIBS) $(ORIG_LIBS)

• Skip building this library if xrequirement (an optional package or project) is disabled or
unavailable

• Compile my_main.cpp and my_src1.cpp using the C++ compiler $(CXX) with the flags

$(cppFLAGS) (see Note below)

• Compile my_src2.c using the C compiler $(CC) with the flags $(cppFLAGS) (see Note

below)

• Using $(CXX) as a linker, build an executable my_exe from the object files my_main.o,

my_src1.o, my_src2.o, the precompiled object file some_obj.o, NCBI C++ Toolkit libraries
libxmylib.a and libxncbi.*, and NCBI SSS DB, SYBASE, and system network

libraries (see Note below)

• Copy the application to the top-level bin/ directory of the build tree (for later use by other
projects)

Note: Since we did not redefine CFLAGS, CXXFLAGS, or LDFLAGS, their default values

ORIG_*FLAGS (obtained during the build treeconfiguration will be used.

C++ Toolkit Book Project Creation and Management

6-9

This customized makefile should be referred to as my_exe in the APP_PROJ macro of the

relevant meta-makefile. Note also, that the Makefile.mk will be implicitly included.

Example 3: User-defined makefile to build... whatever
In some cases, we may need more functionality than the customized makefiles (designed to build
libraries and applications) can provide.

So, if you have a "regular" non-customized user makefile, and you want to make from it, then
you must enlist this user makefile in the USR_PROJ macro of the project's meta-makefile.

Now, during the project build (and before any customized makefiles are processed), your
makefile will be called with one of the standard make targets from the project's build directory.
Additionally, the builddir and srcdir macros will be passed to your makefile (via the make

command line).
In most cases, it is necessary to know your "working environment"; i.e., tools, flags and paths

(those that you use in your customized makefiles). This can be easily done by including Makefile.
mk in your makefile.

Shown below is a real-life example of a user makefile:

• build an auxiliary application using the customized makefileMakefile.hc_gen_obj.app (this
part is a tricky one...)

• use the resultant application $(bindir)/hc_gen_obj to generate the source and header files
humchrom_dat.[ch] from the data file humchrom.dat

• use the script $(top_srcdir)/scripts/if_diff.sh to replace the previous copies (if any) of
humchrom_dat.[ch] with the newly generated versions if and only if the new versions are
different (or there were no old versions).

And, of course, it provides build rules for all the standard make targets.

File $(top_srcdir)/src/internal/humchrom/Makefile.hc_gen_obj:

Build a code generator for hard-coding the chrom data into
an obj file
Generate header and source "humchrom_dat.[ch]" from data
file "humchrom.dat"
Deploy the header to the compiler-specific include dir
Compile source code
#################################

include $(builddir)/Makefile.mk

BUILD__HC_GEN_OBJ = $(MAKE) -f "$(builddir)/Makefile.app.tmpl" \
srcdir="$(srcdir)" TMPL="hc_gen_obj" $(MFLAGS)

all_r: all
all: build_hc_gen_obj humchrom_dat.dep

C++ Toolkit Book Project Creation and Management

6-10

purge_r: purge
purge: x_clean
 $(BUILD__HC_GEN_OBJ) purge

clean_r: clean
clean: x_clean
 $(BUILD__HC_GEN_OBJ) clean
x_clean:
 -rm -f humchrom_dat.h
 -rm -f humchrom_dat.c

build_hc_gen_obj:
 $(BUILD__HC_GEN_OBJ) all

humchrom_dat.dep: $(srcdir)/data/humchrom.dat $(bindir)/hc_gen_obj
 -cp -p humchrom_dat.c humchrom_dat.save.c
 $(bindir)/hc_gen_obj -d $(srcdir)/data/humchrom.dat
 -f humchrom_dat
 $(top_srcdir)/scripts/if_diff.sh "mv" humchrom_dat.h
 $(incdir)/humchrom_dat.h
 -rm humchrom_dat.h
 $(top_srcdir)/scripts/if_diff.sh "mv" humchrom_dat.c
 humchrom_dat.save.c
 mv humchrom_dat.save.c humchrom_dat.c
 touch humchrom_dat.dep

New Project (lib, application) Development Aids
NOTE: in NCBI, you can use the scripts located in the pre-built NCBI C++ toolkit directory $NCBI/
c++/scripts/.

The following topics are discussed in this section:

• scripts/import_project.sh <cvs_tree_path> [builddir]

• scripts/new_project.sh <name> <type> [builddir]

• scripts/hello.sh

scripts/import_project.sh <cvs_tree_path> [builddir]
In many cases, you work on your own project which is a part of the NCBI C++ tree, and you do
not want to check out, update and rebuild the whole NCBI C++ tree. -- Instead, you just want to
use headers and libraries of the pre-built NCBI C++ Toolkit to build your project.

The shell script import_project.sh will checkout your project's source and include directories
from CVS, and it will create a (temporary) makefile based on the project's customized makefile.
This makefile will also contain a reference to the pre-built NCBI C++ toolkit.

For example (full usage):

import_project.sh hello

C++ Toolkit Book Project Creation and Management

6-11

will check out the whole hello demo project from the NCBI C++ tree ($CVSROOT/internal/c++/

src/hello/), and create a makefile Makefile.hello_app that uses the project's customized make-
fileMakefile.hello.app. Now you can just go to the created working directory internal/c++/src/hello/
and build the demo application hello.cgi using:

make -f Makefile.hello_app

scripts/new_project.sh <name> <type> [builddir]
This script will create a startup makefile for a new, from-scratch project called "name" which uses

the NCBI C++ Toolkit (and possibly the C Toolkit as well). For new libraries, type=lib while for
new applications type=app.Sample code will be included in the project directory for new applica-
tions. Different samples are available for type=app[/basic] (a command-line argument demo
application based on the corelib library), type=app/cgi (for a CGI or Fast-CGI application),

type=app/objmgr (for an application using the Object Manager) and type=app/objects (for an
application using ASN.1 objects).You will need to slightly edit the resultant makefile to:

• specify the name of your library (or application)

• specify the list of source files going to it

• modify some preprocessor, compiler, etc. flags, if needed

• modify the set of additional libraries to link to it (if it's an application), if needed

For example (full usage):

new_project.sh foo app/basic

creates a model makefileMakefile.foo_app to build an application using tools and flags hard-
coded in $NCBI/c++/Debug/build/Makefile.mk, and headers from $NCBI/c++/include/. The file /
tmp/foo/foo.cpp is also created; you can either replace this with your own foo.cpp or modify its
sample code as required.Now, after specifying the application name, list of source files, etc., you
can just go to the created working directory foo/ and build your application using:

make -f Makefile.foo_app

You can easily change the active version of NCBI C++ Toolkit by manually setting variable
$(builddir) in the file Makefile.foo_app to the desired Toolkit path, e.g., builddir =
$(NCBI)/c++/GCC-Release/build

scripts/hello.sh
This script will:

• retrieve the demo CGI application project HELLO

• create a standalone makefile to build it

C++ Toolkit Book Project Creation and Management

6-12

• build HELLO application using this makefile

• run HELLO application

It will produce the file hello.html containing a model HTTP response. For more info on the HELLO
CGI project see in section NCBI C++ tools and applications / HELLO.CGI -- a demo CGI applica-
tion (NCBI C++).

An example of the NCBI C++ makefile hierarchy ("corelib/")
See also the source and build hierarchy charts.

>>>>>>>>>> c++/src/Makefile.in:
SUB_PROJ = corelib cgi html @serial@ @internal@ include @builddir@/Makefile.meta
>>>>>>>>>> c++/src/corelib/Makefile.in:
LIB_PROJ = corelib SUB_PROJ = test srcdir = @srcdir@ include @builddir@/Makefile.meta
>>>>>>>>>> c++/src/corelib/Makefile.corelib.lib:
SRC = ncbidiag ncbiexpt ncbistre ncbiapp ncbireg ncbienv ncbistd LIB = xncbi
>>>>>>>>>> c++/src/corelib/test/Makefile.in:
APP_PROJ = coretest srcdir = @srcdir@ include @builddir@/Makefile.meta

Managing the Work Environment
The following topics are discussed in this section:

• Obtaining the Very Latest Builds

• Working in a separate directory

• Working Independently In a C++ Subtree

• Working within the C++ source tree

• Working with the serializable object classes

Obtaining the Very Latest Builds
Each new nightly build is available in the $NCBI/c++.by-date/{date} subdirectory. This is done
regardless of whether the build succeeds or not.

There are defined symlinks into this directory tree. They include:

• $NCBI/c++ - Symbolic link to $NCBI/c++.production.

• $NCBI/c++.potluck - The most recent nightly build. It contains whatever libraries and
executables have managed to build, and it can miss some of the libraries and/or executables.
Use it if you desperately need yesterday's bug fix and do not care of the libraries which are
missing.

C++ Toolkit Book Project Creation and Management

6-13

• $NCBI/c++.metastable - The most recent nightly build for which the compilation (but not
necessarily the test suite) succeeded in all configurations on the given platform. Please note
that some projects, including the entire "gui" tree, are considered expendable due to their
relative instability and therefore not guaranteed to be present.

• $NCBI/c++.current - Symbolic link to $NCBI/c++.metastable.

• $NCBI/c++.stable - The most recent nightly build for which the nightly build (INCLUDING the
gui projects) succeeded AND the test suite passed all critical tests on the given platform. This
would be the preferred build most of the time for the developers whose projects make use of
the actively developed C++ Toolkit libraries. It is usually relatively recent (usually no more than
1 or 2 weeks behind), and at the same time quite stable.

• $NCBI/c++.production - The most recent production snapshot. This is determined based on
general stability of the toolkit and will always have been one of the prior "c++.stable" builds. It
is the safest bet for long-term development. It changes rarely, once in 1 to 3 months.

Working in a separate directory
The following topics are discussed in this section:

• Setting up Directory Location

• The Project's Makefile

• Testing your setup

Setting up Directory Location
There are two topics relevant to writing an application using the NCBI C++ Toolkit:

1. Where to place the source and header files for the project

2. How to create a makefile which can link to the correct C++ libraries

What you put in your makefile will depend on where you define your working directory. In this
discussion, we assume you will be working outside the NCBI C++ tree, say in a directory called
NewProj. This is where you will write both your source and header files. The first step then, is to
create the new working directory and use the new_project.sh script to install a makefile there:

mkdir NewProj
$NCBI/c++/scripts/new_project.sh NewProj app $NCBI/c++/GCC-Debug/build
 Created a model makefile "/home/zimmerma/NewProj/Makefile.NewProj_app".

The syntax of the script command is:

new_project.sh <project_name> <app | lib> [builddir]

where: - project_name is the name of the directory you will be working in - app (lib) is used to
indicate whether you will be building an application or a library - builddir (optional) specifies what
version of the pre-built NCBI C++ Toolkit libraries to link to

C++ Toolkit Book Project Creation and Management

6-14

Several build environments have been pre-configured and are available for developing on
various platforms using different compilers, in either debug or release mode. These environ-
ments include custom-made configuration files, makefile templates, and links to the appropriate
pre-built C++ Toolkit libraries. To see a list of the available environments for the platform you are
working on, use: ls -d $NCBI/c++/*/build. For example, on Solaris, the build directories

currently available are shown in Table 1.

Table 1. Build Directories

Directory Compiler Version

/netopt/ncbi_tools/c++/Debug/build Sun Workshop Debug
/netopt/ncbi_tools/c++/Debug64/build Sun Workshop Debug (64 bit)
/netopt/ncbi_tools/c++/DebugMT/

build
Sun Workshop Debug (Multi-thread safe)

/netopt/ncbi_tools/c++/Release/build Sun Workshop Release
/netopt/ncbi_tools/c++/ReleaseMT/

build
Sun Workshop Release (Multi-thread safe)

/netopt/ncbi_tools/c++/GCC-Debug/
build

GCC Debug

/netopt/ncbi_tools/c++/GCC-Release/
build

GCC Release

In the example above, we specified the GNU compiler debug environment: $NCBI/c++/GCC-
Debug/build. For a list of currently supported compilers, see the Reference Manual's Installation
and configuration page. Running the new_project.sh script will generate a ready-to-use makefile
in the directory you just created. For a more detailed description of this and other scripts to assist
you in the set-up of your working environment, see the Reference Manual page Starting a new C
++ project.

The Project's Makefile
The file you just created with the above script will be called Makefile.NewProj_app. In addition to
other things, you will see definitions for: - $(builddir) - a path to the build directory specified

in the last argument to the above script - $(srcdir) - the path to your current working directory

(".") - $(APP) - the application name - $(OBJ) - the names of the object modules to build and

link to the application - $(LIB) - specific libraries to link to in the NCBI C++ Toolkit - $(LIBS) -

all other libraries to link to (outside the C++ Toolkit)
$(builddir)/lib specifies the library path (-L), which in this case points to the GNU debug ver-

sions of the NCBI C++ Toolkit libraries. $(LIB) lists the individual libraries in this path that you will
be linking to. Minimally, this should include xncbi - the library which implements the foundational

classes for the C++ tools. Additional library names (e.g. xhtml, xcgi, etc.) can be added

here.

C++ Toolkit Book Project Creation and Management

6-15

Since the shell script assumes you will be building a single executable with the same name
as your working directory, the application is defined simply as NewProj. Additional targets to

build can be added in the area indicated towards the end of the file. The list of objects (OBJ)
should include the names (without extensions) of all source files for the application (APP). Again,
the script makes the simplest assumption, i.e. that there is a single source file named NewProj.
cpp. Additional source names can be added here.

Testing your setup
For a very simple application, this makefile is ready to be run. Try it out now, by creating the file
NewProj.cpp:

// File name: NewProj.cpp

#include <iostream>
using namespace std;

int main() {
 cout << "Hello again, world" << endl;
}

and running:

make -f Makefile.NewProj_app

Of course, it wasn't necessary to set up the directories and makefiles to accomplish this
much, as this example does not use any of the C++ classes or resources defined in the NCBI C+
+ Toolkit. But having accomplished this, you are now prepared to write an actual application, such
as described in Writing a simple application project

Most real applications will at a minimum, require that you #include ncbistd.hpp in your header
file. In addition to defining some basic NCBI C++ Toolkit objects and templates, this header file in
turn includes other header files that define the C Toolkit data types, NCBI namespaces, debug-
ging macros, and exception classes. A set of template files are also provided for your use in
developing new applications.

Working Independently In a C++ Subtree
An alternative to developing a new project from scratch is to work within a subtree of the main
NCBI C++ source tree so as to utilize the header, source, and make files defined for that subtree.
One way to do this would be to check out the entire source tree and then do all your work within
the selected subtree(s) only. A better solution is to create a new working directory and check out
only the relevant subtrees into that directory. This is somewhat complicated by the distributed
organization of the C++ CVS tree: header files are (recursively) contained in an include subtree,
while source files are (recursively) contained in a src subtree. Thus, multiple checkouts may be
required to set things up properly, and the customized makefiles (Makefile.*.app) will need to be
modified. The shell script import_project.sh will do all of this for you. The syntax is:

import_project.sh subtree_name [builddir]

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistd.hpp

C++ Toolkit Book Project Creation and Management

6-16

where: - subtree is the path to a selected directory inside internal/c++/src/ - builddir
(optional) specifies what version of the pre-built NCBI C++ Toolkit libraries to link to

As a result of executing this shell script, you will have a new directory created with the path-
name ./internal/c++/ whose structure contains "slices" of the original CVS tree. Specifically, you
will find:

./internal/c++/include/subtree_name
./internal/c++/src/subtree_name

The src and include directories will contain all of the requested subtree's source and header
files along with any hierarchically defined subdirectories. In addition, the script will create new
makefiles with the suffix *_app. These makefiles are generated from the orginal customized make
files (Makefile.*.app) located in the original src subtrees. The customized makefiles were
designed to work only in conjunction with the build directories in the larger NCBI C++ tree; the
newly created makefiles can be used directly in your new working directories.

The NCBI C++ Toolkit project directories, along with the libraries they implement and the log-
ical modules they entail, are summarized in the Reference Manual section (NCBI C++ libraries,
see Part 3). Currently, there are eight project directories in the NCBI C++ source tree, including:

• corelib - libraries for the Toolkit foundations

• connect - libraries providing client/server connections

• cgi - libraries for developing CGI applications

• html - libraries for developing HTML pages

• serial - libraries for handling ASN, XML and files of other specified formats

• hello - a simple example project that incorporates all but the serial libraries

Two other project directories, internal and objects, are not intended for general use, and the
mechanisms in the import_project.sh script for generating makefiles are not guaranteed to work
for these. The objects subdirectories are used as the original repositories for ASN.1 specifica-
tions, and subsequently, for writing the object definitions and implementations created by the
datatool program. These definitions are available for use in your application as described in the

section Processing ASN.1 Data. The internal subdirectory is used for in-house development, and
is the recommended work area for new projects.

Working within the C++ source tree
The following topics are discussed in this section:

• Checkout the source tree and configure a build directory

• The project's directories and makefiles

C++ Toolkit Book Project Creation and Management

6-17

• Makefile.in meta files

• An example meta-makefile and its associated project makefiles

• Executing make

• Custom project makefile: Makefile.myProj

• Library project makefile: Makefile.myProj.lib

• Application project makefile: Makefile.myProj.app

• The configure scripts

Most users will find that working in a checked-out subtree or a private directory is preferable
to working directly in the C++ source tree. There are two good reasons to avoid doing so:

1. Building your own versions of the extensive libraries can be very time-consuming.

2. There is no guarantee that the library utilities your private code links to have not become
obsolete.

This section is provided for those developers who must work within the source tree. The Ref-
erence Manual sections provide more complete and technical discussion of the topics reviewed
here, and many links to the relevant sections are provided. This page is provided as an overview
of material presented in theReference Manual and on the Working with Makefiles pages.

Checkout (*) the source tree and configure a build directory
Since you will be working inside the C++ source tree you will first need to checkout $CVSROOT/
internal/c++. If you do not wish to include all of the subprojects contained in $CVSROOT/internal/
c++/internal, you may want to use cvs_core.sh (provided in the scripts directory) for checking
out.

Once you have done so, you will need to run one of the configure scripts in the internal/c++
directory. For example, to configure your environment to work with the gcc compiler (on any plat-
form), just run: ./configure. Users working under Windows NT should consult the MS Visual C++
section in the reference manual.

The configure scriptis a multi-platform configuration shell script (generated from configure.in
using autoconf). Here are some pointers to sections in the Reference Manual that will help you
configure the build environment:

• Wrapper scripts supporting various platforms

• Optional configuration flags

The configure script concludes with a message describing how to build the C++ Toolkit
libraries. If your application will be working with ASN.1 data, use the --with-objects flag in running
the configure script, so as to populate the include/objects and src/objects subdirectories and

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/scripts/cvs_core.sh

C++ Toolkit Book Project Creation and Management

6-18

build the objects libraries. The objects directories and libraries can also be updated separately
from the rest of the compilation, by executing make inside the build/objects directory. Prior to
doing so however, you should always verify that your build/bin directory contains the latest ver-
sion of datatool.

The project's directories and makefiles
To start a new project ("myProj"), you should begin by creating both a src and an include subtree

for that project inside the C++ tree. In general, all header files that will be accessed by multiple
source modules outside the project directory should be placed in the include directory. Header
files that will be used solely inside the project's src directory should be placed there, along with
the implementation files.

In addition to the C++ source files, the src subtrees contain meta-makefiles named Makefile*.
in, which are used by the configure script to generate the corresponding makefiles in the build
subtrees. Figure 1 shows slices of the directory structure reflecting the correspondences between
the meta-makefiles in the src subtrees and makefiles in the build subtrees. Figure 2 is a sketch of
the entire C++ tree in which these directories are defined.

During the configuration process, each of the meta-makefiles in the top-level of the src tree is
translated into a corresponding Makefile* in the top-level of the build tree. Then, for each project
directory containing a Makefile.in, the configure script will: (1) create a corresponding subdirec-
tory of the same name in the build tree if it does not already exist, and (2) generate a correspond-
ing Makefile in the project's build subdirectory. The contents of the project's Makefile.in in the src
subdirectory determine what is written to the project's Makefile in the build subdirectory. Project
subdirectories that do not contain any *.in files are ignored by the configure script.

Thus, you will also need to create a meta-makefile in the newly created src/myProj directory
before configuring your build directory to include the new project. The configure script will then
create the corresponding subtree in the build directory, along with a new Makefile generated from
the Makefile.in you created. See Makefile Hierarchy (Chapter 4, Figure 1) and Figure 1.

C++ Toolkit Book Project Creation and Management

6-19

Figure 1: Meta make files and the make files they generate

Makefile.in meta files
The meta-makefile myProj/Makefile.in should define at least one of the following macros:

• USR_PROJ (optional) - a list of names for user-defined makefiles. This macro is provided

for the usage of ordinary stand-alone makefiles which do not utilize the make commands
contained in additional makefiles in the top-level build directory. Each p_i listed in
USR_PROJ = p_1 ... p_N must have a corresponding Makefile.p_i in the project's source
directory. When make is executed, the make directives contained in these files will be exe-
cuted directly to build the targets as specified.

• LIB_PROJ (optional) - a list of names for library makefiles. For each library l_i listed in

LIB_PROJ = l_1 ... l_N, you must have created a corresponding project makefile
namedMakefile.l_i.lib in the project's source directory. When make is executed, these
library project makefiles will be used along with Makefile.lib and Makefile.lib.tmpl (located
in the top-level of the build tree) to build the specified libraries.

C++ Toolkit Book Project Creation and Management

6-20

• APP_PROJ (optional) - a list of names for application makefiles. Similarly, each application

(p1, p2, ..., pN) listed under APP_PROJ must have a corresponding project makefile named

Makefile.p*.app in the project's source directory. When make is executed, these applica-
tion project makefiles will be used along with Makefile.app and Makefile.app.tmpl to build
the specified executables.

• SUB_PROJ (optional) - a list of names for subproject directories (used on recursive makes).

The SUB_PROJ macro is used to recursively define make targets; items listed here define

the subdirectories rooted in the project's source directory where make should also be exe-
cuted.

The Makefile.in meta file in the project's source directory defines a kind of road map that will
be used by the configure script to generate a makefile (Makefile) in the corresponding directory
of the build tree. Makefile.in does not participate in the actual execution of make, but rather,
defines what will happen at that time by directing the configure script in the creation of the Make-
file that will be executed (see also the Reference Manual's description of Makefile targets).

An example meta-makefile and its associated project makefiles
A simple example should help to make this more concrete. Assuming that myProj is used to

develop an application named myProj, myProj/Makefile.in should contain the following:

####### Example: src/myProj/Makefile.in

APP_PROJ = myProj

srcdir = @srcdir@
include @builddir@/Makefile.meta

The last two lines in Makefile.in should always be exactly as shown here. These two lines
specify make variable templates using the @var_name@ syntax. When generating the corre-

sponding Makefile in the build directory, the configure script will substitute each identifier name
bearing that notation with full path definitions.

The corresponding Makefile in build/myProj generated by the configure script for this exam-
ple will then contain:

####### Example: myBuild/build/myProj/Makefile

Generated automatically from Makefile.in by configure.

APP_PROJ = myProj

srcdir = /home/zimmerma/internal/c++/src/myProj
include /home/zimmerma/internal/c++/myBuild/build/Makefile.meta

C++ Toolkit Book Project Creation and Management

6-21

As demonstrated in this example, the @srcdir@ and @builddir@ aliases in the makefile

template have been replaced with absolute paths in the generated Makefile, while the definition of
APP_PROJ is copied verbatim.

The only build target in this example is myProj. myProj is specified as an application - not a

library - because it is listed under APP_PROJ rather than under LIB_PROJ. Accordingly, there

must also be a file named Makefile.myProj.app in the src/myProj directory. A project's application
makefile specifies:

• APP - the name to be used for the resulting executable

• OBJ - a list of object files to use in the compilation

• LIB - a list of NCBI C++ Toolkit libraries to use in the linking

• LIBS - a list of other libraries to use in the linking

There may be any number of application or library makefiles for the project, Each application
should be listed under APP_PROJ and each library should be listed under LIB_PROJ in Makefile.

in. A suitable application makefile for this simple example might contain just the following text:

####### Example: src/myProj/Makefile.myProj.app

APP = myProj
OBJ = myProj
LIB = xncbi

In this simple example, the APP_PROJ definition in Makefile.in is identical to the definitions of

both APP and OBJ in Makefile.myProj.app. This is not always the case however, as the

APP_PROJ macro is used to define which makefiles in the src directory should be used during

compilation, while APP defines the name of the resulting executable and OBJ specifies the names

of object files. (Project makefiles for applications are described in more detail below.)

Executing make
Given these makefile definitions, executing make all_r in the build project subdirectory indi-

rectly causes build/Makefile.meta to be executed, which sets the following chain of events in
motion:

1. For each proj_name listed in USR_PROJ, Makefile.meta first tests to see if Makefile.

proj_name is available in the current build directory, and if so, executes:

make -f Makefile.proj_name builddir="$(builddir)"
srcdir="$(srcdir)" $(MFLAGS)

Otherwise, Makefile.meta assumes the required makefile is in the project's source direc-
tory, and executes:

C++ Toolkit Book Project Creation and Management

6-22

make -f $(srcdir)/Makefile.proj_name builddir="$(builddir)"
srcdir="$(srcdir)" $(MFLAGS)

In either case, the important thing to note here is that the commands contained in the
project's makefiles are executed directly and are not combined with additional makefiles
in the top-level build directory. The aliased srcdir, builddir, and MFLAGS are still

available and can be referred to inside Makefile.proj_name. By default, the resulting
libraries and executables are written to the build directory only.

2. For each lib_name listed in LIB_PROJ, make -f $(builddir)/Makefile.lib.
tmpl is executed. This in turn specifies that $(builddir)/Makefile.mk, $(srcdir)/Makefile.

lib_name.lib, and $(builddir)/Makefile.lib should be included in the generated makefile
commands that actually get executed. The resulting libraries are written to the build sub-
directory and copied to the lib subtree.

3. For each app_name listed in APP_PROJ, make -f $(builddir)/Makefile.app.
tmpl is executed. This in turn specifies that $(builddir)/Makefile.mk, $(srcdir)/Makefile.

app_name.app, and $(builddir)/Makefile.app should be included in the generated make-
file commands that actually get executed. The resulting executables are written to the
build subdirectory and copied to the bin subtree.

4. For each dir_name listed in SUB_PROJ (on make all_r), cd dir_name is executed

and make all_r is executed. Steps (1) - (3) are then repeated in the project subdirec-

tory.

More generally, for each subdirectory listed in SUB_PROJ, the configure script will create a

relative subdirectory inside the new build project directory, and generate the new subdirectory's
Makefile from the corresponding meta-makefile in the src subtree. Note that each subproject
directory must also contain its own Makefile.in along with the corresponding project makefiles.
The recursive make commands, make all_r, make clean_r, and make purge_r all refer

to this definition of the subprojects to define what targets should be recursively built or removed.

Custom project makefile: Makefile.myProj (*)
As described, regular makefiles contained in the project's src directory will be invoked from the
build directory if their suffixes are specified in the USR_PROJ macro. This macro is originally

defined in the project's src directory in the Makefile.in meta file, and is propagated to the corre-
sponding Makefile in the build directory by the configure script.

For example, if USR_PROJ = myProj in the build directory's Makefile, executing make will
cause Makefile.myProj (the project makefile) to be executed. This project makefile may be
located in either the current build directory or the corresponding src directory. In either case,
although the makefile is executed directly, references to the source and object files (contained in
the project makefile) must give complete paths to those files. In the first case, make is invoked as:
make -f Makefile.myProj, so the makefile is located in the current working (build) directory

C++ Toolkit Book Project Creation and Management

6-23

but the source files are not. In the second case, make is invoked as: make -f $(srcdir)/
Makefile.myProj, so both the project makefile and the source files are non-local. For exam-

ple:

####### Makefile.myProj

include $(NCBI)/ncbi.mk
CC = $(NCBI_CC) # use the NCBI default compiler for this platform
INCPATH = $(NCBI_INCDIR) # along with the default include
LIBPATH = $(NCBI_LIBDIR) # and library paths

all: $(srcdir)/myProj.c
 $(CC) -o myProj $(srcdir)/myProj.c $(NCBI_CFLAGS) -I($INCPATH) \
 -L($LIBPATH) -lncbi
 cp -p myProj $(builddir)/bin

clean:
 -rm myProj myProj.o

purge: clean
 -rm $(builddir)/bin/myProj

will cause the C program myProj to be built directly from Makefile.myProj using the default C

compiler, library paths, include paths, and compilation flags defined in ncbi.mk. The executables
and libraries generated from the targets specified in USR_PROJ are by default written to the cur-

rent build directory only. In this example however, they are also explicitly copied to the bin direc-
tory, and accordingly, the purge directives also remove the copied executable.

Library project makefile: Makefile.myProj.lib (*)
Makefile. lib_name.lib should contain the following macro definitions:

• $(SRC) - the names of all source files to compile and include in the library

• $(OBJ) - the names of any pre-compiled object files to include in the library

• $(LIB) - the name of the library being built

In addition, any of the make variables defined in build/Makefile.mk, such as $CPPFLAGS,

$LINK, etc., can be referred to and/or redefined in the project makefile, e.g.:

CFLAGS = $(ORIG_CFLAGS) -abc -DFOOBAR_NOT_CPLUSPLUS
CXXFLAGS = $(ORIG_CXXFLAGS) -xyz
CPPFLAGS = $(ORIG_CPPFLAGS) -UFOO -DP1_PROJECT -I$(NCBI_C_INCLUDE)
LINK = purify $(ORIG_LINK)

C++ Toolkit Book Project Creation and Management

6-24

For a simple example, see Makefile.corelib.lib, and for additional documentation, refer to the
Reference Manual section. This customized makefile can be used to build both static and
dynamic(DLL) versions of the library. To build as a DLL on the appropriate platforms, you can
explicitly specify:

LIB_OR_DLL = dll

Conversely, if you want the library to always be built as static, specify:

LIB_OR_DLL = lib

Application project makefile: Makefile.myProj.app (*)
Makefile. app_name.app should contain the following macro definitions:

• $(SRC) - the names of the object modules to build and link to the application

• $(OBJ) - the names of any pre-compiled object files to include in the linking

• $(LIB) - specific libraries in the NCBI C++ Toolkit to include in the linking

• $(LIBS) - all other libraries to link to (outside the C++ Toolkit)

• $(APP) - the name of the application being built

For example, if C Toolkit libraries should also be included in the linking, use:

LIBS = $(NCBI_C_LIBPATH) -lncbi $(ORIG_LIBS)

The project's application makefile can also redefine the compiler and linker, along with other
flags and tools affecting the build process, as described above for Makefile.*.lib files, For an
example, see Makefile.coretest.app. For additional documentation refer also to the Reference
Manual section.

The configure scripts
A number of compiler-specific wrappers for different platforms are described in the Reference
Manual. Each of these wrappers performs some pre-initialization for the tools and flags used in
the configure script before running it. The compiler-specific wrappers are in the c++/compilers
directory. The configure script serves two very different types of function: (1) it tests the selected
compiler and environment for a multitude of features and generates #include and #define state-
ments accordingly, and (2) it reads the Makefile.in files in the src directories and creates the
corresponding build subtrees and makefiles accordingly.

Frequently during development it is necessary to make minor adjustments to the Makefile.in
files, such as adding new projects or subprojects to the list of targets. In these contexts however,
the compiler, environment, and source directory structures remain unchanged, and configure is
actually doing much more work than is necessary. In fact, there is even some risk of failing to re-
create the same configuration environment if the user does not exactly duplicate the same set of

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/Makefile.corelib.lib
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/Makefile.coretest.app
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/compilers/

C++ Toolkit Book Project Creation and Management

6-25

configure flags when re-running configure. In these situations, it is preferable to run an auxilliary
script named config.status, located at the top level of the build directory in a subdirectory named
status.

In contrast, changes to the src directory structure, or the addition/deletion of Makefile.in files,
all require re-running the configure script, as these actions require the creation/deletion of subdi-
rectories in the build tree and/or the creation/deletion of the associated Makefile in those directo-
ries.

Working with the serializable object classes
The following topics are discussed in this section:

• Serializable Objects

• Locating and browsing serializable objects in the C++ Toolkit

• Base classes and user classes

• Adding methods to the user classes

Serializable Objects
All of the ASN.1 data types defined in the C Toolkit have been re-implemented in the C++ Toolkit
as serializable objects. Header files for these classes can be found in the include/objects directo-
ries, and their implementations are located in the src/objects directories. and

The implementation of these classes as serializable objects has a number of implications. It
must be possible to use expressions like: instream >> myObject and outstream << myObject,
where specializations are entailed for the serial format of the iostreams (ASN.1, XML, etc.) , as
well as for the internal structure of the object. The C++ Toolkit deploys several object stream
classes that specialize in various formats, and which know how to access and apply the type
information that is associated with the serializable object.

The type information for each class is defined in a separate static CTypeInfo object, which
can be accessed by all instances of that class. This is a very powerful device, which allows for the
implementation of many features generally found only in languages which have built-in class
reflection. Using the Toolkit's serializable objects will require some familiarity with the usage of
this type information, and several sections of this manual cover these topics (see Runtime Object
Type Informationfor a general discussion).

Locating and browsing serializable objects in the C++ Toolkit
The top level of the include/objects subtree is a set of subdirectories, where each subdirectory
includes the public header files for a separately compiled library. Similarly, the src/objects subtree
includes a set of subtrees containing the source files for these libraries. Finally, your build/objects
directory will contain a corresponding set of build subtrees where these libraries are actually built.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/

C++ Toolkit Book Project Creation and Management

6-26

If you checked out the entire C++ CVS tree, you may be surprised to find that initially, the
include/objects subtrees are empty, and the subdirectories in the src/objects subtree contain only
ASN.1 modules. This is because both the header files and source files are auto-generated from
the ASN.1 specifications by the datatool program. As described in Working within the C++

source tree, you can build everything by running make all_r in the build directory.

Note: If you would like to have the objects libraries built locally, you must use the --with-

objects flag when running the configure script.
You can also access the pre-generated serializable objects in the public area, using the

source browsers to locate the objects you are particularly interested in. For example, if you are
seeking the new class definition for the Bioseq struct defined in the C Toolkit, you can search for
the CBioseq class, using either the LXR identifier search tool, or the DOC++ class hierarchy
browser. Starting with the name of the data object as it appears in the ASN.1 module, two simple
rules apply in deriving the new C++ class name:

1. The one letter 'C' (for class) prefix should precede the ASN.1 name

2. All hyphens ('-') should be replaced by underscores ('_')

For example, Seq-descr becomes CSeq_descr.

Base classes and user classes
The classes whose names are derived in this manner are called the user classes, and each also
has a corresponding base class implementation. The name of the base class is arrived at by
appending "_Base" to the user class name. Most of the user classes are empty wrapper classes
that do not bring any new functionality or data members to the inherited base class; they are sim-
ply provided as a platform for development. In contrast, the base classes are not intended for
public use (other than browsing), and should never be modified.

More generally, the base classes should never be instantiated or accessed directly in an
application. The relation between the two source files and the classes they define reflects a gen-
eral design used in developing the object libraries: the base class files are auto-generated by
datatool according to the ASN.1 specifications in the src/objects directories; the inherited class

files (the so-called user classes) are intended for developers who can extend these classes to
support features above and beyond the ASN.1 specifications.

Many applications will involve a "tangled hierarchy" of these objects, reflecting the complexity
of the real world data that they represent. For example, a CBioseq_set contains a list of
CSeq_entry objects, where each CSeq_entry is, in turn, a choice between a CBioseq and a
CBioseq_set.

Given the potential for this complexity of interactions, a critical design issue becomes how
one can ensure that methods which may have been defined only in the user class will be avail-
able for all instances of that class. In particular, these instances may occur as contained elements
of another object which is compiled in a different library. These inter-object dependencies are the

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/docxx/HIER.html

C++ Toolkit Book Project Creation and Management

6-27

motivation for the user classes. As shown in Figure 2, all references to external objects which
occur inside the base classes, access external user classes, so as to include any methods which
may be defined only in the user classes:

Figure 2: Example of complex relationships between base classes and user classes

In most cases, adding non-virtual methods to a user class will not require re-compiling any
libraries except the one which defines the modified object. Note however, that addiing non-static
data members and/or virtual methods to the user classeswill change the class layouts, and in
these cases only, will entail recompiling any external library objects which access these classes.

Adding methods to the user classes
Note: This section describes the steps currently required to add new methods to the user
classes. It is subject to change, and there is no guarantee the material here is up-to-date. In gen-
eral, it is not recommended practice to add methods to the user classes, unless your purpose is
to extend these classes across all applications as part of a development effort.

The following topics are discussed in this section:

• Checking out source code, configuring the working environment, building the libraries.

• Adding methods

Checking out source code, configuring the working environment, building the libraries.

1. Create a working directory (e.g. Work) and check out the C++ tree to that directory:,
using either cvs checkout or the shell script, cvs_core.sh <dirname>.

2. Configure the environment to work inside this tree using one of the configure scripts,
according to the platform you will be working on. Be sure to include the --with-objects flag
in invoking the configure script.

3. Build the xncbi, xser and xser libraries, and run datatool to create the objects

header and source files, and build all of the object module libraries:

C++ Toolkit Book Project Creation and Management

6-28

cd path_to_compile_dir/build/corelib
make # Build the core library
cd path_to_compile_dir/build/util
make # Build the util library
cd path_to_compile_dir/build/serial
make all_r # might as well build datatool and avoid possible version skew
cd path_to_compile_dir/build/connect
make # needed for a few projects
cd path_to_compile_dir/build/objects
make all_r

Here path_to_compile_dir is set to the compile work directory which depends on the
compiler settings (e.g: ~/Work/internal/GCC-Debug). In addition to creating the header
and source files, using make all_r (instead of just make) will build all the libraries. All

libraries that are built are also copied to the lib dir, e.g.:~/Work/internal/c++/GCC-Debug/
lib. Similarly, all executables (such as asn2asn) are copied to the bin dir, e.g.: ~/Work/

internal/c++/GCC-Debug/bin.

You are now ready to edit the user class files and add methods.

Adding methods
As an example, suppose that we would like to add a method to the CSeq_inst class to calculate
sequence length, e.g.:CSeq_inst::CalculateLength(). We begin by adding a declaration of this
method to the public section of the user class definition in Seq_inst.hpp:

class CSeq_inst : public CSeq_inst_Base
{
public:
 CSeq_inst(void);
 ~CSeq_inst(void);

 static CSeq_inst* New(void)
 {
 return new CSeq_inst(eCanDelete);
 }

 int CalculateLength() const;

protected:
 CSeq_inst(ECanDelete);
};

and in the source file, Seq_inst.cpp, we implement

C++ Toolkit Book Project Creation and Management

6-29

int CSeq_inst::CalculateLength() const
{
 // implementation goes here
}

These files are in the include/objects/seq and src/objects/seq subdirectories, respectively.
Once you have made the modifications to the files, you need to recompile the seq library, lib-
seq.a, i.e.:

cd path_to_compile_dir/GCC-Debug/build/objects/seq
make

Here path_to_compile_dir is set to the compile work directory which depends on the compiler
settings (e.g: ~/Work/internal/GCC-Debug). The new method can now be invoked from within a
CBioseq object as: myBioseq.GetInst().CalculateLength().

The key issue that determines whether or not you will need to rebuild any external libraries
that use the modified user class involves the class layout in memory. All of the external libraries
which reference the object refer to the class layout that existed prior to the changes you have
made. Thus, if your modifications do not affect the class layout, you do not have to rebuild any
external libraries. Changes that do affect memory mapping include:

• The addition of new, non-static data members

• The addition of virtual methods

If you have added either of the above to the user class, then you will need to identify all
external objects which use your object, and recompile the libraries in which these objects are
defined.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seq

